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Abstract 

Constraint programming (CP) is an emergent software technology for declarative 
description and effective solving of large combinatorial problems especially in the area of 
integrated production planning. In that context, CP can be considered as an appropriate 
framework for development of decision making software supporting small and medium 
sized enterprises (SMEs) in the course of projects portfolio prototyping. The problem 
considered aims at finding a computationally effective approach for scheduling a new 
projects portfolio subject to constraints imposed by an availability of time-constrained 
resources. The problem belongs to a class of multi-mode project scheduling problems 
where the problem of finding a feasible solution is NP-complete. The aim of the paper is 
to present a CP modeling framework providing a prompt service to a set of routine 
queries stated both in straight and reverse way, e.g., concerning the projects portfolio 
makespan implied by a given resources allocation, and the feasible resources allocation 
guaranteeing an assumed projects portfolio makespan. The way the responses to the 
routine requests can be guaranteed while may be available in an on-line mode is 
illustrated in the example enclosed. 

 
 
1 INTRODUCTION 
 

For Small and Medium Size Enterprises (SMEs) with multiple production orders, an optimal 
assignment of production steps to available resources is often economically indispensable. The 
goal is to generate a plan/schedule of production for a given period of time while minimizing of 
cost that is equivalent to maximization of profit. In that context executives want to know how 
much a project will cost, what resources are needed, what resources allocation can guarantee 
project due time completion, and so on. So, SME’s needs might be formulated in a form of 
standard, routine questions, such as: Does the projects portfolio can be completed due to an 
arbitrary given deadline? Does the execution of the given projects portfolio meet the assumed 
resources allocation within the arbitrary given period of time? Is it possible to undertake a new 
project under given (constrained in time) resources availability while guaranteeing disturbance-
free execution of the already executed projects? What values and of what variables guarantee the 
project portfolio will completed with assumed values of a given set of performance indexes? 

Most companies, particularly SMEs have to manage various projects which share a pool of 
constrained resources, taking into account various objectives at the same time. That is well 
known fact [1],[3], that about 80% of companies have to deal with multiple projects. This 
corresponds to statistics showing that about 90% of all projects occur in the multiproject context. 
Since the project management problems belong to the class of NP-complete problems, new 
methods and techniques addressing the impact of real-life constraints on on-line decision making 
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are of great importance. Such methods, enhancing on-line project management, and supporting a 
manager in the course of decision making, e.g., in the course of evaluation whether a new project 
can be accepted to be processed in a multi-project environment of a manufacturing system at 
hand or not, could be included into Decision Support Systems (DSS) tools integrated into 
standard project management software. 

Regardless of its character and scope of business activities, a modern enterprise has to build a 
project-driven development strategy in order to respond to challenges imposed by growing 
market complexity and globalization. Managers need to be able to use a modern DSS so as to 
make optimal business decisions from the strategic perspective of enterprise operation. In this 
context, this contribution covers various issues of decision making within the framework of 
Constraint Programming (CP). The paper can be seen as continuation of our former works 
concerning projects portfolio prototyping [2], [3] and CP-based approach to the project-driven 
manufacturing.  

We first introduce the problem formulation, see the Section 2. Then we present some details 
of the modeling framework assumed, in particular we describe the formalisms employed, see the 
Section 3. In the Section 4, the straight and reverse approaches to projects portfolio scheduling 
and the relevant illustrative examples are discussed. We conclude with some results and lesson 
learned in the Section 6. 
 
 
2 PROBLEM FORMULATION 
 
2.1 Illustrative example of decision problem 
 

Tree projects P1, P2, P3, are considered (see the activity networks Fig. 1).  Each project 
consists of 20 operations. Operation times determining the i-th project are specified by the 
sequence Ti = (ti,j,…,ti,k,…,tim), where: ti,k means the k-th operation time of the i-th project.   

Up to two kinds of renewable resources can be allocated to each Oi,j operation. So, the dpi,j,k   
means an amount of the k-th resource allocated to the operation Oi,jin a unit time. 

Therefore, besides of sequences determining the operation times (1)   
 T1 =  (1,  2,  3,  4,  4,  6,  3, 2,  1,  4,  3,  1,  4,  3,  2,  3,  1,  4,  2,  4), 
 T2 =  (2,  1,  3,  5,  2,  5,  2,  1,  6,  3,  3,  4,  6,  3,  3, 2,  6,  3,  1,  4),   (1) 
 T3 =  (1,  6,  4,  3,  3,  6,  3,  8,  5,  2,  4,  3, 5,  2,  4,  3,  4,  6,  2,  4). 

the sequences (2) items of which determine the resources amount required by the relevant 
operations are considered. 

DP1,1  = (3,  1,  1,  1,  1,  1,  2,  1,  2,  1,  2,  3,  2,  1,  2 , 3,  2,  3,  4,  3), 
DP1,2  = (1,  2,  1,  1,  2,  3,  3, 1,  1,   2,  1,  1,  1,  4,  2,  1,  2,  2,  1,  2),  
DP2,1 =  (2,  2,  1,  1,  1,  3,  1,  2,  2,  2,  1,  1,  2,  4,  1,  2,  2,  2,  1,  2),  
DP2,2 =  (2,  1,  2,  3,  1,  2,  1,  2,  1,  1,  2,  1,  2,  1,  3,  2,  2,  2,  1,  1),  (2) 
DP3,1 =  (2,  1,  3,  1,  2,  1,  2,  2,  1,  1,  1,  2,  1,  1,  2,  1,  2,  2,  1,  2), 
DP3,2  = (1,  2,  2,  1,  1,  1,  2,  1,  1,  4,  2,  2,  2,  1,  2,  3,  2,  1,  3,  1). 

The total amount of resources (available within assumed time horizon H) is specified by 
sequences zo1, zo2,  (3) items of which determine resources’ amount available at a given time unit:  

zo1 = (15,15,15,15,15,15, 5,15,15,15,13,13,13,13,13,13,13,13,13,13,10,10,…,10), (3) 
zo2 = (14,14,14,14,14,14,14,14,17,17,17,17,15,15,15,15,15,15,15,15,10,10,…,10). 

Assuming the given above resources availability as well as their allocations the following 
questions are considered: Does the projects portfolio can be completed due to an arbitrary given 
deadline 36 units of time? What resources allocation guarantee the projects portfolio will 
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completed within the period do not exceeding 36 units of time?  Response to these questions can 
be provided under the following assumptions. 
 

 
 
2.2 Model of decision problem 

 
Consider the discrete time horizon H = [0, h], H ⊂ N, within of which the projects portfolio 

P = {P1,P2,...,Plp} has to be completed. Given amount of renewable resources lz and their 
availability Zo = (zo1,zo2,…,zolz); zoi = (zoi,1,zoi,2,…,zoi,h) – the sequence items of which determine 
the availability of the i-th resource in a time unit within H. zoi,j – amount of the i-th resource at the 

P1 

O1,1 

O1,2 

O1,3

O1,6

O1,5

O1,8 

P2 

O2,1 

O2,2 O2,5 O2,6

O2,7

O2,9 

O1,4

O1,7

O2,3 

O2,4 

O2,8

O1,9 O1,10

O1,11 O1,12 

O1,13

O1,14 O1,15

O1,16 

O1,17

O1 18

O1,19 

O1,20

O2,10 O2,11

O2,12
O2,13

O2,14

O2,15

O2,16

O2,17

O2,18 

O2,19

O2,20 

P3 

O3,1 

O3,2 

O3,3

O3,4 O3,5 O3,6 

O3,7

O3,8

O3,9

O3,10

O3,11

O3,12 

O3,13

O3,14 O3,15 O3,16

O3,17 

O3,18

O3,19

O3,20 

Legend 
Oi,j - operation Oi,j 

 
Fig. 1. Activity networks for P1, P2, P3. projects 
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j-th unit of time. Each project Pi consists of lo operations Pi = {Oi,1,Oi,2,Oi,3,…,Oi,loi}, where: 
Oi,j = (xi,j, tij, Tpi,j, Tzi,j, Dpi,j) such that: 

xi,j – means the moment the operation Oi,j begin, i.e., the time counted from the time horizon 
beginning H, 
tij – the Oi,j-th operation time, 
Tpi,j = (tpi,j,1, tpi,j,2, ... , tpi,j,lz) – the sequence of time moments the operation Oi,j allocates new 
amounts of renewable resources: tpi,j,k – the time counted since the moment xi,j the dpi,j,k 
amount of the k-th renewable resource was allocated to the operation Oi,j. That means a 
resource is allocated to operation during its execution period: 0 ≤ tpi,j,k< tij; k = 1,2,…,lz.  
Tzi,j = (tzi,j,1, tzi,j,2, ... , tzi,j,lz) – the sequence of moments the operation  Oi,j releases the 
subsequent resources: tzi,j,k  – the time counted since the moment xi,j the dpi,j,k amount of the k-
th renewable resource was released by the operation Oi,j.. That is assumed a resource is 
released by operation during its execution: 0 < tzi,j,k≤ tij; k = 1,2,…,lz, and tpi,j,k < tzi,j,k ; k = 1, 
2, …, lz.  
Dpi,j = (dpi,j,1, dpi,j,2,..., dpi,j,lz) – the sequence of the k-th resource amounts dpi,j,k  are allocated to 
the operation Oi,j, i.e., dpi,j,k  – the amount of the k-th resource allocated to the operation Oi,j. 
That assumes: 0 ≤  dpi,j,k  ≤  zok;  k = 1, 2, …, lz.    

Graphical illustration of the activity Oi,j = (xi,j, tij, Tpi,j, Tzi,j, Dpi,j) description . 

 
Fig. 2. Graphical illustration of parameters xi,j, tij, Tpi,j, Tzi,j, Dpi,j  specifying activity 

Oi,j = (xi,j, tij, Tpi,j, Tzi,j, Dpi,j) 
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limited. For instance the sequence  Dp1,2 = (1, 2, 1, 0, 0),  means that the activity O1,2 requires 
just first three resources and the resource 4th and 5th are do not needed.  

Consequently, each operation Oi,j = (xi,j, tij, Tpi,j, Tzi,j, Dpi,j) is specified by the following 
sequences of: 

• moments the operations start their execution in the project Pi: 
 Xi = (xi,1, xi,2,…,

iloix , ),  0 ≤  xi,j<  h;  i = 1, 2,…, lp;  j = 1, 2,…, loi,  

• operation times associated to operations in the project Pi: Ti=(ti,1,ti,2,…,
iloit , ),  

• moments the j-th resource is allocated to the k-th operation in the project  Pi: 
 TPi,j = (tpi,1,j, ...,tpi,k,j,..., jloi i

tp ,, ),      

• moments the j-th resource is released by the k-th opration in the Pi: 
 TZi,j= (tzi,1,j, tzi,2,j,... , jloi i

tz ,, ),      

• amounts of the j-th resources allocated to the k-th operation in the project Pi: 
 DPi,j  = (dpi,1,j, dpi,2,j,… , jloi i

dp ,, ).  
Moreover, the following constraints are assumed as well: 

 
1) Operations order constraints:  

The activity networks considered provide the order in which project’s operations are 
executed, where operations state for the nodes and arcs determine an order of operations 
performance. Consequently, the following constraints are considered:   

• the k-th operation follows the i-th one:   
 xi,j + tij ≤ xi,k ,        (4) 
• the k-th operation is follows other operations:    

 xi,j + ti,j≤xi,k, xi,j+1+ti,j+1 ≤ xi,k, , ... , xi,j+n+ti,j+n≤xi,k,     (5) 
• the k-th operation is followed by other operations:   

 xi,k + ti,k ≤ xi,j, xi,k + ti,k ≤ xi,j+1, ... , xi,k+ti,k + ≤ xi,j+n.      (6) 
For instance, in case of activity networks from Fig. 1 the constraints (4), (5), and (6) are as 

follows (see Table 1). 
 
Table. 1 Operations order constraints for activity networks from Fig. 1. 
 

Project  1 Project  P2 Project  P3 
x1,3 ≥  x1,1 +  t1,1 
x1,4 ≥  x1,1 +  t1,1 
... 
x1,20 ≥  x1,12 +  t1,12 

x2,3 ≥  x2,1 + t2,1 

x2,4 ≥  x2,1 + t2,1 
... 
x2,20 ≥  x2,9  + t2,9 

x3,3 ≥  x3,1 + t3,1 

x3,3 ≥  x3,2 + t3,2 
... 
x3,20 ≥  x3,6  + t3,6 

 
2) Resource availability rate constraints: 

The resources requested by an operation usually have to follow some proportion limits, i.e. 
limits determining the mutual rates the resources can be allocated to the activity  Oi,j. The 
constraints considered are determined by the formulae (7):   

 dpi,j,1+dpi,j,2+dpi,j,3+…+dpi,j,lz = rmi,j,     (7)  

where:  lz – a number of renewable resources, i=1,2,…,lp;  j = 1, 2,…, loi,  
lp- is a number of projects, loi - the number of the i-th projects’ activities.  
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So, the sum of resources amount allocated to Oi,j is limited by rmi,j. In general case, to each 
Pi the following sequence corresponds RMi = (rm1,1, rm1,2, …,rmi,loi).   

 
3) Resource conflict constraints: 

 In order to avoid deadlocks the constraints providing conflicts resolution, i.e., avoiding the 
occurrence of closed loop resources request, are considered. The constraints guarantee at any 
moment within the assumed time horizon H the sum of  allocated amounts of a given resource do 
not exceed its current availability zoi,j. So, for each the k-th resource, at the moment v ∈ H, the 
following inequalities hold (8): 
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    (8) 

where: lp – a number of projects, loi – a number of operations contained by the i-th project,  
dpi,j,k – an amount of the k-th resource allocated by Oi,j, 

),,(1 bav  – the unit step function of the resource allocation )1(- )1(  ),,(1 bvavbav −−= ,  
where:  )1(v - a unit step function  defined as follows (see Fig.2) 

 
Fig. 2. A unit step function 
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Fig. 3. Illustration of the constraint (8) concerning the unique resource and activities O1,1, 
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That can be shown [5], the constraint (8) implies the set of inequalities (9) for the projects 
portfolio considered.   

In constraints (9), the sum of requested resources is calculated only at moments corresponding 
to the ones xi,j + tpi,j, when resources are allocated to subsequent operations. Amount of available 
resources may change within the time horizon H. So, in order to avoid the amount of allocated 
resources exceeds the amount of available resources (similarly to (8)) the constraints associated to 
the moments vpk,i the resources availability change, are introduced (10).    

 
 
 
 
 
 
 
 

       (9) 
  
 
 
 
 
 
 

for: k = 1,2, …, lz, where lz – a number of renewable resources.  
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for k = 1,2, …, lz,  
where: lz – a number of renewable resources, vpk,i – its the i-th moment the available amount of 

the k-the resource changes, 01 ≠−− ikik vpkvpk zozo
,, ,)(, . For the k-th resource the values 

vpk,i form the following sequence Vpk = (vpk,1,vpk,2, …,vpk,q) items of which are the 
moments corresponding to zok changes, q – a number of elements in the sequence Vpk. 

 
2.3 Problem statement 

 
The introduced model provides the formal framework enabling to state the problem 

considered. Given time horizon H, the projects portfolio P, the set of resources and their 
availabilities Zo within H. Given are sequences Ti, TPi,j, TZi,j, DPi,j. The following question should 
be answered:  
• Does a given resources allocation guarantee the project portfolio makespan do not exceed 

the deadline H? Response to this question results in determination of  the sequences: 
X1,X2,…,Xlp. 
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• Does there exists such resources allocation guaranteeing the project portfolio makespan do 
not exceed the deadline H? Response to this question results in determination of  the 
sequences: X1, X2,…,Xlp as well as the sequences DP1,1, DP1,2, …,DP1,lz, DP2,1, DP2,2, 
…,DP2,lz, …, DPlp,1, DPlp,2, …,DPlp,lz.  

The following remarks should be stated: - the problems considered are formulated in terms of 
variables and their discrete domains as well as sets of constraints; - the sufficient conditions 
guaranteeing the there exist a admissible solution to the above problems should be known; - the 
question stated above correspond to the straight and reverse problems of multi-product 
scheduling. 

 
 

3 CONSTRAINT SATISFACTION PROBLEM 
 

Constraint programming (CP) is an emergent software technology for declarative description 
and effective solving of large combinatorial problems, especially in the areas of integrated 
production planning. Since a constraint can be treated as a logical relation among several 
variables, each one taking a value in a given (usually discrete) domain, the idea of CP is to solve 
problems by stating the requirements (constraints) that specify a problem at hand, and then 
finding a solution satisfying all the constraints [4]. From this perspective, CP can be considered 
as a pertinent framework for the development of decision making software aimed at supporting 
SMEs in the course of projects portfolio prototyping. Because of its declarative nature, it is 
particularly useful for applications where it is enough to state what has to be solved instead how 
to solve it.   

More formally, CP is a framework for solving combinatorial problems specified by pairs: <a 
set of variables and associated domains, a set of constraints restricting the possible 
combinations of the values of the variables>. So, the constraint satisfaction problem (CSP) [4], 
[8], is defined as follows: 

CS=((A, D), C)                  (11) 

where:  A = {a1, a2,...,ag} – a finite set of discrete decision variables,  
D = {Di |Di={di1, di2,...,dij,...,dih}, i = 1,..,g} – a family of finite variable domains, and the 
finite set of constraints  
C = {Ci|i=1,..,L} – a finite set of constraints limiting the decision variable values.  

The solution to the CS is a vector (d1i,d2k,…,dnj) such that the entry assignments satisfy all the 
constraints C.  So, the task is to find the values of variables satisfying all the constraints, i.e., a 
feasible valuation. Generally, the constraints can be expressed by arbitrary analytical and/or 
logical formulas as well as bind variables with different non-numerical events.  

The inference engine consists of the following two components: constraint propagation and 
variable distribution. Constraints propagation uses constraints to prune the search space. The aim 
of propagation techniques is to reach a certain level of consistency in order to accelerate search 
procedures by drastically reducing the size of the search tree. The constraints propagation 
executes almost immediately. What limits the size of the problem in practical terms is the 
variable distribution phase, which employs the backtracking-based search and is very time 
consuming as a result. Consequently, the crucial factor determining the practical usability of 
CP/CLP-based DSS is the provision of a variable distribution strategy that guarantees a feasible 
solution obtained in an on-line mode.   

The declarative character of Constraint Programming (CP) languages and their high 
efficiency in solving combinatorial problems offer an attractive alternative to the currently 
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available systems of computer-integrated management [6], [7], that employ operation research 
techniques. 

 
 
4 ILLUSTRATIVE EXAMPLE 

 
For illustration of the CP based approach capability let us consider the projects portfolio P = 

{P1,P2,P3} as stated in the Section 2.1. Let us assume the resources are allocated, and released at 
the moments corresponding to the beginning and completion of operations. Therefore, the 
sequences TP1,1, TP1,2, TP2,1, TP2,2,  TP3,1, TP3,2 considered are as follows: 
P1,2 = TP1,1= TP2,2 = TP2,1 = TP3,2 = TP3,1 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). 
Consequently: TP1,1 = T1, TP1,2 = T1, TP2,1 = T2,  TP2,2 = T2, TP3,1 = T3, TP3,2 = T3. The considered 
sequences: DP1,1, DP1,2, DP2,1, DP2,2, DP3,1, DP3,2  are given in the Section 2.1. 
 
4.1 The straight problem case 

 
For a given set of renewable resources and their availability Zo = (zo1, zo2), see the Section 

2.1, as well as the time horizon H = [0, 36], H ⊂ N, consider the question: Does the given projects 
portfolio can be completed within the time horizon  H?  

 Response to this question requires the following sequences calculation: X1=(x1,1,x1,2,…,x1,20), 
X2= (x2,1, x2,2,…, x2,20), X3= (x3,1, x3,2,…,x3,20), where: 0≤ xi,j<36; i = 1,2,3; j= 1,2,…,20. 

The sequences X1, X2, X3 sought have to follow constraints imposed by activities order and 
resources allocation, particularly: 

• Activities precedence order constraints: 
For activity networks from Fig. 1 the constraints following  (4), (5), (6) are determined 
as in the Table 1. 

• Constraints imposed on resources conflict resolution:   
     Taking into account the sequences TPi,j (particularly their zero-value entries) as well as 

equality of sequences TZi,j and Ti, the constraints (due to (9)) imposed on shared resources are 
determined by (12) and (13):  
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Constraints imposed due to (10) are as follows (14) and (15):  
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Of course, the sequences sought have to follow both the operations order and resource 

conflict constraints. In the case considered, 120 constraints (12), (13), have been taken into 
account, each one consisting of 60 components.  

That is assumed the moments of beginning of operations ending the projects, i.e., O1,20, O2,20, 
O2,20  have to follow the constraints (16), Fig. :   

x1,20+t1,20 ≤ h,   x2,20+t2,20 ≤ h,  x3,20+t3,20 ≤ h.       (16) 

The stated above constraint satisfaction problem has been implemented in Oz Mozart 
environment. The first feasible solution:  

X1 = (0, 4,  1, 6, 10, 6, 12, 12, 10, 15, 15, 19,  6, 1, 7, 4, 9, 9, 14, 20), 
X2 = (0, 10, 3, 2, 11, 19, 8, 10, 24, 5, 8, 11, 16, 15, 11, 24, 18, 26, 14, 30), 
X3 = (0, 0,  4, 12, 16, 26, 6, 9, 17, 17, 22, 0, 7, 13, 18, 22, 1, 25, 25, 32), 

has been obtained in 137 seconds, after the1993-th step (the processor used: AMD Athlon(tm)XP 
2500+ 1.85 GHz and RAM 1,00 GB RAM, Fig. 4).  

 

 
 

Fig. 4. Searching tree for straight problem and corresponding to its solution see Fig. 7. 
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Rys. 5. Gantt’s charts of P1, P2, P3 projects execution and resources zo1, zo2 allocation for the 

straight problem. 
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4.2 The reverse problem case 
 

Given projects portfolio and sequencesT1, T2, T3 as well as TZ1,1,  TZ1,2,  TZ2,1,  TZ2,2,  TZ2,1,  TZ2,2 
see the Subsection 4.1.  The resources availability limited by constraints (4) are determined by the 
following sequences :  

RM1  = (4, 3, 3, 5, 2, 3, 3, 2, 4, 4, 3, 2, 3, 4, 2, 5, 3, 3, 3, 4), 
RM2  = (4, 2, 3, 4, 2, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 3, 4, 3, 4, 2), 
RM3  = (5, 2, 3, 4, 2, 3, 3, 3, 4, 4, 4, 2, 2, 4, 2, 3, 3, 3, 4, 4). 

For a given set of renewable resources and their availability Zo = (zo1, zo2), see the Section 
2.1, as well as the time horizon H = [0, 36], H ⊂ N, consider the question: Does there exist the 
resource allocation guaranteeing the projects portfolio completion time will not exceed the 
assumed time horizon H?  
Response to this question requires the following sequences calculation: X1, X2, X3: 

X1 = (x1,1, x1,2,…, x1,20),  X2 = (x2,1, x2,2,…, x2,20),  X3 = (x3,1, x3,2,…, x3,20),  

where: 0 ≤  xi,j <  36;  i = 1,2,3;  j = 1,2,…,20, and 

DP1,1  = (dp1,1,1, dp1,2,1,… , dp1,10,1),  DP1,2  = (dp1,1,2, dp1,2,2,… , dp1,10,2), 
DP2,1  = (dp2,1,1, dp2,2,1,… , dp2,10,1),  DP2,2  = (dp2,1,2, dp2,2,2,… , dp2,10,2),  

where:  0 ≤  dpi,j,k <  4; i = 1, 2;  j = 1, 2, …, 10, k = 1,2. 
Of course, the sequences sought have to follow both the activities order and resource 

conflict constraints. The activities order constraints are given in the Table 1, and the resource 
availability constraints, determined due to (7) and taking into account sequences RM1, RM2, 
RM3, are given in the Table 2. 

 
Tab. 2  Resource availability constraints, determined due to (7). 
 

Project  P1 Project  P2 Project  P3 
dp1,1,1+dp1,1,2 = 4 
dp1,2,1+dp1,2,2 = 3 
... 
dp1,20,1+dp1,20,2 = 4 

dp2,1,1+dp2,1,2 = 4 
dp2,2,1+dp2,2,2 = 2 
... 
dp2,20,1+dp2,20,2 = 2 

dp2,1,1+dp2,1,2 = 5 
dp2,2,1+dp2,2,2 = 2 
... 
dp2,20,1+dp2,20,2 = 4 

 
Resource conflict constraints follow the formulas:  (9), (10). 
     The stated above constraint satisfaction problem has been implemented in Oz Mozart 

environment [9]. The first feasible solution below: 
X1 = (0, 4, 1, 6, 10, 6, 12, 12, 10, 15, 15, 19, 6, 1, 7, 4, 9, 9, 14, 20),    
X2 = (0, 7, 2, 2, 8, 10, 5, 7,  21, 2,  5, 8, 12, 12, 8, 18, 15, 21, 11, 27), 
X2 = (0, 0, 1, 12, 15, 26, 6, 9, 17, 17, 22, 0, 7, 10, 12, 18, 1, 21, 21, 32), 
DP1,1  = (3, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2),   
DP1,2  = (1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2),  
DP2,1  = (2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1),  
DP2,2  = (2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 3, 1), 
DP3,1  = (3, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2),  
DP3,2  = (2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 3, 1, 1, 2, 1, 2, 1, 2, 3, 1), 

has been obtained in 32 ms, after the102-th step (the processor used: AMD Athlon(tm)XP 
2500+ 1.85 GHz and RAM 1,00 GB RAM).  
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Fig. 8.  Searching tree for reverse problem and corresponding to its solution see Fig. 7.  

 
The graphical illustration of the solution obtained is show in Fig. 9. 

 
In order to guarantee the response times will enable for a DSS to be useful in an on-line 

mode in cases of the real life cases the serialization concept can be implemented. Serialization 
allows to write much less code that can handle different objects, without knowing in 
advance what particular instances will be of user’s further interest. Therefore the obtained 
script can be used as an object taken directly from a higher level. In other words 
serialization results in implementation of the predefined models of constrains involved in 
the problem in hand.  

In considered case of  projects scheduling the two kinds of serialization may be used: for 
unary and cumulative scheduling [11]. However, because the first one is dedicated to the cases 
the only one kind of resources can be simultaneously allotted to an activity let us concentrate 
on the second one. 

 
 
5. SERIALIZATION 
 

In order to illustrate an idea standing behind the concept of serialization let us consider the 
following example. Given are two discrete renewable resources. The total number of units of 
the first resource available within the time horizon {0,…,H} is limited by 5, and by 2 in the 
second case. Given activity durations and amounts of resources required be activities (see 
Table 3). Consider the question: Does there exists such resources allocation guaranteeing the 
all activities will completed within the assumed time horizon {0,…,H}. 
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Fig. 9. Gantt’s charts of P1, P2, P3 projects execution and resources zo1, zo2 allocation for the 

reverse problem.   
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An Oz Mozart implementation of the above problem formulated in terms of CSP provides 

the solution shown in Fig. 10.   
 

Tab. 3 Activity durations and  amounts of resources required be activities. 

 
 
a)     b)    
 
 
 
 
 
 
 
 
 
 
 
Legend:  
 
 
 
 
 
Fig. 10. Serialization effect; a) solution in Oz Mozart, b) Gantt’s chart of the solution 
 
Fig. 11 provides the script implementing cumulative scheduling serializator. That should be 

noted that its usage require just some data declaration as in the case considered: amounts of 
resources, activities duration, resources required by activities, and numbers of resource units  
allotted, i.e.  decision variables: Cap, Dur, Tasks i Use. Additionally the variable Stat 
determining starting times of activities is declared as well. That should be noted there is not 
need to implement the constraints  (6), (7), the function Schedule.cumulative implementation is 
enough. In other words In the course of serialization besides of implementation on “the lower 
level” of predefined task oriented models some heuristic rules are employed as well. Such tusk 
specific orientation perspective results in more efficient (faster) data processing, however in 
the cost of dedicated (i.e., narrowed) domain of applications.  

In order to illustrate the benefits following from the implementation of the serialization 
concept, let us consider the case stated in the Section 4.1, i.e. regarding the straight version of 
the project portfolio scheduling problem. 

Activity Resource Time Units number of the resource required  
O1,1 1 5 5 
O1,2 1 2 3 
O1,3 2 7 2 
O1,4 2 4 1 
O1,5 2 3 1 

Oi,j Oi,j – an activity, a – an activity duration, b – a number of resources required  

a 

b 

2 
1 

 
 

O1,1  
O1,2 

O1,5

O1,4 O1,3 

H
120

Resources 
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Fig. 11. Oz Mozart’s scripts  describing Cumulative serializer implementation  
 
Because usage of the Schedule.cumulative function requires the resources amount have to 

constant within considered the time horizon, the times the resources amount changes are 
treated as additional (dummy) activity requiring or releasing particular resource. The searching 
tree providing the solution to the above problem is show in the Fig. 12. The corresponding 
Gantt’s chart is show in Fig. 13. 

 
 

 
5 CONCLUDING REMARKS 
 

 Proposed approach to projects portfolio prototyping provides the framework allowing one to 
take into account both: straight and reverse approach to multi-product project-like scheduling. 
This advantage can be seen as a possibility to response (besides of standard questions: Is it 
possible to complete a projects portfolio at a scheduled project deadline?) to the questions like: 
What values and of what variables guarantee the projects portfolio will completed due to assumed 
values of set of performance indexes?  

    Proposed approach provides the framework allowing one to take into account both: the 
sufficient conditions (guaranteeing the admissible solutions there exist) and choosing the best 
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solution on the basis of chosen evaluation criteria. It can also be considered as a contribution to 
project-driven production flow management applied in make-to-order manufacturing as well as 
for prototyping of the virtual organization structures.  
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